

We will be starting soon!

Thanks for joining us

Enclosure Best Practices: Roofs, Walls, and Floors

Rick Chitwood

June 12, 2022

Zoom Orientation

- Please be sure your full name is displayed
- Please mute upon joining
- Use "Chat" box to share questions or comments
- Under "Participant" select "Raise Hand" to share a question or comment verbally
- The session may be recorded and posted to 3C-REN's on-demand page.
 Feel free to ask questions via the chat and keep video off if you want to remain anonymous in the recording.

3C-REN: Tri-County Regional Energy Network

- Three counties working together to improve energy efficiency in the region
- Services for
 - Building Professionals: industry events, training, and energy code compliance support
 - Households: free and discounted home upgrades
- Funded by ratepayer dollars that 3C-REN returns to the region

3C-REN Staff Online

High Performance Fundamentals Series

- A series of 6 classes (intro, building science, <u>enclosures</u>, heat pumps, water heating, electrification)
- Focused on building practices to exceed code and optimize performance
- Outcomes are improved tenant health and comfort and minimized environmental impact
- This series is designed to provide a solid foundation in the building science knowledge needed for high performance work

(Thermal) Enclosure Best Practices: Ceilings, Walls, & Floors

RICK CHITWOOD

<u>RICK@CHITWOODENERGY.COM</u>

Rick's Background...

- 1. Broad experience but master of nothing
- 2. BSME, 1983
- HVAC designer, installer, and commissioner – and – building insulation specifier, installer, and enclosure commissioner (wrote QII in 2003)
- 4. Field Research/Building Performance Testing
- 5. Co-author of; *Measured Home Performance* and *Real-World Zero Net Energy Homes For California*
- 6. BPI Hall-of-Fame inductee

8

Agenda

- **1. Enclosure Basics**
- 2. Ceilings
- 3. Walls (and Attic Knee Walls)
- 4. Windows
- 5. Floors (and Slab Edges)
- 6. Air Sealing
- 7. Two Case Studies
- 8. Recap
- 9. Most Important Enclosure Goals

Q&A (15 minutes)

1. Enclosure Basics

SCIENCE AND TERMINOLOGY MATTER

2022

10

Enclosure Best Practices

Terminology

Enclosure, Envelope, and Shell are all terms used for what separates us from Mother Nature.

- Ceilings
- Walls
- Windows
- Floors

Our Building Enclosures Must Control:

Three Types of Heat Transfer

<u>Conduction</u> – heat transfer through solid materials and assemblies

<u>Radiation</u> – heat transfer between objects (requires a large temperature difference, Q=0.000000017 * A * T⁴)

Enclosure Heat Loss (by component)

Air Infiltration	23%
Windows	22%
Slab Edge	20%
Walls	14%
Ducts	12%
Ceiling	9%

(Based on CEC CBECC computer model)

Barriers to Enclosure Performance

- Architectural complexity
- Price pressure
- No testing
- Lack of training

Tackling the Barriers

Architectural complexity

• Design awareness

Price pressure

 Tough nut to crack ... but education can help!

No testing

 Challenging ... but can be fixed by practitioners with knowledge and persistence!

Lack of training

• Why we're here!

TODAY'S FOCUS: what we can fix in the field!

Universal Enclosure Performance Factors

- **1.** Continuous air barriers
- 2. Insulation in contact with the air barrier
- 3. No gaps, voids, or compression

'Build tight and ventilate right' is our mantra.

Why?

Wind Pressures Vary

Stack Effect Varies

Mechanical Effect Varies

Enclosure Best Practices

Installation Quality is More Important Than Rvalue

Enclosure Best Practices

Performance Factors for **Ceilings**

CEILING SPECIFICS

- 1. Continuous and airtight ceiling air barrier (usually the drywall)
- UNIVERSAL
- 2. Insulation in contact with the air barrier
- 3. No gaps, voids, or compression

Interstitial Cavities open to the Attic (AKA Missing Fire Blocking)

Review Performance Factors for **Ceilings**

1. Continuous and airtight ceiling air barrier (usually the drywall) **2.** Insulation in contact with the air barrier **3.** No gaps, voids, or compression

Performance Factors for Walls

WALL SPECIFICS

- 1. Substantially airtight wall cavity
- 2. Insulation in contact with the air barriers (in contact with all 6 sides of the cavity)
- **3. Framing factor**

UNIVERSAL

4. No gaps, voids, or compression

AGEMA
SPO 107 F HAN 106 F
LEVEL SSC SENST SEPERTER NOF
EMISS 0.98 Tabb 77F Dobi LENS 25
COLOR NORM SCALE NORM ISSOCALE INFF
1989-MAY-01 00:11:05

Enclosure Best Practices

Special Case: Attic Kneewalls

OUR MOST DIFFICULT WALL

Enclosure Best Practices

Estimating Assembly Performance:

- 1. Assume the profile line is straight
- **2.** Measure ΔT across the air film
- 3. Measure the outside temperature

Kneewall Demo – 4 Different R-values; 0, 11, 13, and 19

Review Performance Factors for Walls

- 1. Substantially airtight wall cavity
- 2. Insulation in contact with the air barriers (in contact with all 6 sides of the cavity)
- **3. Framing factor**
- 4. No gaps, voids, or compression

72
4. Windows

2022

73

Enclosure Best Practices

Enclosure Heat Loss (by component)

Air Infiltration	23%
Windows	22%
Slab Edge	20%
Walls	14%
Ducts	12%
Ceiling	9%

(Based on CEC CBECC computer model)

Performance Factors for Windows

- Glass performance
 Frame performance
 Air leakage
- 4. Exterior shading

GLASS + FRAME performance: U-Factor and SHGC

How Spectrally Selective Low-E Works

	Low-E Type	Glass VLT	"Typical" Window Properties		
			U-Factor	SHGC	VLT
Double Pane Insulating Glass	None (clear glass)	81%	0.55	0.60	0.60
	High Solar Gain	75%	0.33	0.52	0.56
	Medium Solar Gain	70%	0.32	0.32	0.53
	Low Solar Gain	66%	0.31	0.22	0.50

Air Leakage; best to worst

Exterior Shades

- Less expensive than window replacement
- Appropriate for California's sunny and mild climate
- Critical for large glass areas
- Exposure and sun angles matter

5. Floors

AND SLAB EDGES

2022

83

Enclosure Best Practices

Performance Factors for **Floors** (similar to ceilings)

FLOOR SPECIFICS

1. Continuous and airtight floor air barrier (usually the subfloor)

UNIVERSAL

- 2. Insulation in contact with the air barrier
- 3. No gaps, voids, or compression

Enclosure Heat Loss (by component)

Air Infiltration	23%
Windows	22%
Slab Edge	20%
Walls	14%
Ducts	12%
Ceiling	9%

(Based on CEC CBECC computer model)

Outside Insulation

Beneath Slab Insulation

Note: Not to scale.

Review Performance Factors for **Floors**

- 1. Continuous and airtight
- floor air barrier (usually the subfloor)
- **2.** Insulation in contact
- with the air barrier
- 3. No gaps, voids, or compression

6. Air Sealing

CEILINGS, WALLS, FLOORS

2022

99

Enclosure Best Practices

Air Sealing

1.Air Leakage is a

Big Deal

2.Measure It

3.Reduce It

IS d	
Enclosure Heat Loss (by	component)
Air Infiltration	23%
Windows	22%
Slab Edge	20%
Walls	14%
Ducts	12%
Ceiling	9%

Cold

138.0 0

7/3/2009 1:49:57 PM

Tape to the Top Plate

1.0 ACH 50

176 CFM 50

9 CFM Natural

BEFORE INSULATION AND DRYWALL

Glue the Wall Drywall

0.6 ACH 50

81 CFM 50

4 CFM Natural

7. Two Case Studies

2005 HOME WITH SOME AIR SEALING <u>2019 HIGH PERFORMANCE</u>

108

2022

Enclosure Best Practices
Case Study – 2005 Showcase Homes

Showcase Home – Performance Monitored by DOE

- High-end custom home (Realtor's Showcase of Homes)
- •Conventional architecture
- •Conventional framing
- Conventional insulation (R-21 batts in walls, R-38 loose fill in attic)
- •Minimal air sealing (only missing fire stops)
- •Conventional HVAC system (ducts in the attic)

Showcase Home – Performance Monitored by DOE

- •Actual cooling costs reduced 81% (83% compressor, 68% fan, report page 10)
- •Actual heating costs 49% reduction in gas usage, 65% fan energy reduction (report page 10)
- •Cost of energy improvements were 0.4% of home cost, or \$5,139.00 (see report page 11)

Case Study – 2019 Mike MacFarland Home

PG&E 2019 Residential Title 24 Code Readiness Support

8. Recap

CHALLENGES & SOLUTIONS

2022

120

Enclosure Best Practices

Challenges

Research shows that the opportunity for improvement is HUGE:

- **1.** Code has advanced BUT
- 2. Performance has not kept pace *AND*
- 3. Modeling is seldom accurate it doesn't reflect what happens in the field

Challenges

Industry culture poses obstacles:

- 4. Lack of performance testing
- 5. Code minimum—not high performance—is the standard goal
- 6. Bid competition breeds optimism (& mediocrity)

9. Most Important Enclosure Goals

AIR SEALING AND INSULATION PERFORMANCE

123

022

Enclosure Best Practices

- 1. Find the air leaks and fix them.
- 2. Provide consistent test results

between 2.0 and

0.6 ACH50

Insulation Performance

- Find the insulation defects and fix them.
- 2. Provide consistent infrared scans that show zero defects

Final Notes

- There is no Silver Bullet, there are a thousand
 Silver Beebees. There are other performance factors to get correct.
- 2. The next class in the HPF Series is Heat Pump Performance

Thank you RICK CHITWOOD

RICK@CHITWOODENERGY.COM

Enclosure Best Practices

- Serves all building professionals
- Three services
 - Energy Code Coach
 - Training and Support
 - Regional Forums
- Makes the Energy Code easy to follow

Energy Code Coach: 3c-ren.org/codes 805.220.9991 Event Registration: **3c-ren.org/events**

- Serves current and prospective building professionals
- Expert instruction:
 - Technical skills
 - Soft skills
- Helps workers to thrive in an evolving industry

Event Registration: **3c-ren.org/events**

Multifamily (5+ units)

- No cost technical assistance
- Rebates up to \$750/apartment plus additional rebates for specialty measures like heat pumps

Single Family (up to 4 units)

- Sign up to participate!
- Get paid for the metered energy savings of your customers

Enrollment: 3C-REN.org/contractor-participation

Closing

- Continuing Education Units Available
 - Contact <u>itzel.torres@ventura.org</u> for AIA LUs
- Coming to Your Inbox Soon!
 - Slides, Recording, & Survey Please Take It and Help Us Out!
- Upcoming Courses:
 - Central Coast Reach Codes Policy Workshop (7/14)
 - Passive House Windows (7/19)
 - Incentive Opportunities and Resources in the Central Coast (7/20)
 - 2022 California Energy Code: Reaching Towards Higher Efficiency Standards (3C-REN Regional Forum) (7/21)
 - Whole House Assessment: The Home Energy Audit Explained (7/26)
 - Save Money & Go Green: How to Bring Clean Energy to Affordable Multifamily Housing (7/28)
 - Communicating the Value of High Performance (Ongoing Invitation)

Thank you!

For more info: 3c-ren.org

For questions: info@3c-ren.org

TRI-COUNTY REGIONAL ENERGY NETWORK SAN LUIS OBISPO · SANTA BARBARA · VENTURA

Questions

